Halaman

Jumat, 21 Desember 2012

Pengelolaan Usaha dan Strategi Kewirausahaan

Pengelolaan Usaha dan Strategi Kewirausahaan

Perencanaan Usaha “Suatu cetak biru tertulis (blue-print) yang berisikan tentang udaha, usulan usaha, operasional usaha, rincian finansial, strategi usaha, peluang pasar yang mungkin diperoleh, dan kemampuan serta ketrampilan pengelolannya.

Zimmerer (1993:331), unsur perencanaan usaha :

  1.  Ringkasan eksekutif
  2.  Pernyataan misi
  3.  Lingkungan usaha
  4.  Perencanaan pemasaran
  5.  Tim manajemen
  6.  Data finansial
  7. Aspek-aspek legal

Ringkasan eksekutif

  1. Nama, alamat, dan nomor telepon perusahaan
  2. Nama, alamat, dan nomor telepon penting di perusahaan
  3. Laporan singkat gambaran perusahaan
  4. Laporan singkat gambaran pasar untuk produk
  5. Laporan singkat gambaran aksi-aksi strategi untuk meraih keberhasilan perusahaan
  6. Laporan singkat gambaran manajerial dan pengalaman teknik dari orang-orang penting diperusahaan
  7. Laporan keperluan dana dan cara menggunakannya

Perencanaan Usaha Secara Detail

  • Latar Belakang Usaha
  • Gambaran Usaha secara Detail
  • Analisis Pasar
  • Analisis pesaing, memuat gambaran
  • Perencanaan Strategi Usaha
  • Spesifikasi Organisasi dan Manajemen
  • Perencanaan Keuangan
  • Perencanaan Aksi Strategis

Aspek yang dimuat Dalam Proposal

  • —  Manajemen Usaha
  • —  Pemasaran
  • —  Produksi/Operasional
  • —  Keuangan Perusahaan

Aspek Pengelolaan Keuangan

  • Aspek Sumber Dana
  • Aspek Rencana dan Penggunaan Dana
  • Aspek Pengawasan atau Pengendalian Keuangan

Sumber Keuangan Perusahaan dari asalnya, antara lain :

  1. Dana yang berasal dari perusahaan disebut pembelanjaan internla
  2. Dana yang berasal dari luar perusahaan disebut pembelanjaan eksternal
  3. Penggunaan Dana Perusahaan
  4. Penggunaan Cadangan
  5. Penggunaan Laba yang Tidak dibagi/ditahan

Sumber Dana Ekstern Mencakup

  1. Dana dari Pemilik atau Penyertaan
  2. Dana yang berasal dari utang/pinjaman—  
  3. Dana Bantuan Program Pemerintah Pusat dan Daerah
  4. Dana Venture, yaitu dana dari perusahaan yang ingin menginvestasikan dananya pada perusahaan kecil yang memiliki potensi

Perencanaan Keuangan dan Penggunaan Dana

  • Biaya Awal
  • Proyeksi/Rancangan Keuangan, mencangkup :
  • Neraca Harian
  • Laporan L/R
  • Laporan Arus Kas
  • Analisis Pulang Pokok
  • —Biaya Awal yang tidak terduga
  • —Biaya Administrasi
  • —Biaya Bangunan
  • —Biaya Asuransi
  • Biaya Tambahan atau biaya secara umum

Perencanaan Pemasaran

  1. “ Menentukan kebutuhan dan keinginan pelanggan
  2.  Memilih pasar sasaran khusus
  3. “ Menempatkan strategi pemasaran dalam persaingan
  4. “ Memilih strategi

Keunggulan bersaing terletak

  • “ Kualitas yang lebih baik
  • “ Harga yang lebih murah dan bisa ditawar
  • “ Lokasi yang cocok, lebih dekat, lebih cepat
  • “ Seleksi barang dan jasa yang lebih menarik
  • “ Pelayanan yang lebih menarik dan memuaskan
  • “ Kecepatan, baik dalam pelayanan maupun dalam penyaluran barang

Strategi dibangun berdasarkan

  1. “Orientasi konsumen
  2. Kualitas
  3. “Kenyamanan dan kesenangan
  4. “Inovasi
  5. “Kecepatan
  6. “Pelayanan dan kepuasan pelanggan

Produk gagal

  1. “ Produk baru tidak berbeda secara memadai dengan produk yang ada di pasar
  2. “ Wirausaha tidak memiliki pengetahuan yang memadai tentang pasar
  3. “ Perusahaan sangat miskin perencanaan dan kurang gencar dalam memperkenalkan produk barunya
  4.  Wirausaha gagal untuk menyesuaikan strategi produknya ketika ada perubahan
  5.  Perusahaan kekurangan dana yang memadai dan kurang komitmen terhadap produk baru

Meminimalkan resiko dalam produk baru

  • “ Simplicity (sederhana)
  • “ Integrity (integritas)
  • “ Human focus (fokuskan pada orang)
  • “ Sinergy (berdaya juang)
  • “ Creativity (kreaativitas)
  • “ Risk (resiko)


Cara merekayasa produk
  1. “ Jenis-jenisnya diperbarui
  2. “ Kualitasnya dibeda-bedakan dan ditingkatkan
  3. “ Modal dan desainnya bermacam-macam dan dibedakan
  4. “ Kemasan, warna, bentuk, ukuran, standar, mrek, dibuat sedemikian rupa sehingga lebih menarik


Strategi pemasaran bagi usaha baru
  • “ Penetrasi pasar
  • “ Pengembangan pasar
  • “ Pengembangan produk
  • “ Segmentasi pasar
Teknik penentuan harga untuk produk baru
  1. “ Menghasilkan produk yang dapat diterima oleh konsumen potensial, tidak peduli berapa banyaknya
  2. “ Memelihara pangsa pasar yang akibat tumbuhnya persaingan
  3. “ Memperoleh laba


Teknik Penentuan harga untuk barang konsumen
  1. “ Harga di bawah pasar untuk produk yang sama
  2. “ Harga di atas harga pasar
  3. “ Harga sama dengan harga pasar


Faktor dan proses kewirausahaan
  • —  Motif Berprestasi (achievement)
  • —  Optimisme (optimism)
  • —  Sikap nilai (value attitudes)
  • —  Status kewirausahaan (entreprenuerial status)
  • Sesungguhnya Allah tidak akan merubah keadaan suatu kaum sebelum mereka merubah keadaan mereka sendiri (QS Ar Rad:11)
  1. Tahap imitasi dan duplikasi
  2. Tahap duplikasi dan pengembangan
  3. Tahap menciptakan sesuatu yang baru dan beda
  4. —Berfokus pada masa yg akan datang dan usaha-usaha menengah diarahkan u/ jangka panjanga
  5. —Pengambilan resiko moderat dengan tingkat  toleransi yg tinggi terhadap perubahan dan kegagalan
  6. Kapasitas u/ menemukan ide-ide inovasi yg memberi kepuasan kepada konsumen


Tahap awal
  1. —  Struktur pola yg sederhana dan luas dg jaringan kerja komunikasi yg luas secara horizontal
  2.   Otoritas pengambilan kepuasan dimiliki oleh wirausaha
  3.   Informal dan sistem kontrol


Tahap Pertumbuhan
  1. —  Tumbuhan sederhana,efesien, orientasi laba, dan rencana langsung u/ mencapainya
  2. —  Sama seperti tahap awal
  3. —  Sama seperti tahap awal
  4. —  Kapasitas u/ menempa selama pertumbuhan cepat, kemurnian organisasi dan kemampuan berhitung


Tahap pertumbuhan
  1. —  Pengetahuan manajerial dan pengalaman dengan menggunakan orang  lain dan sumber daya yang  ada
  2. —  Struktur yg fungsioanl atau vertikal, akan tetapi saluran komunikasi informal sering digunakan
  3. —  Mendelegasikan otoritas pengambilan keputusan kepada manajer level dua
  4. —  Kuasi formal (yaitu tidak terlalu komplek atau bekerja sama) dalam beroperasi

Faktor – faktor pendorong dan penghambat keberhasilan kewirausahaan adalah faktor :

  • —  Kemampuan dan kemauan
  • —  Tekad yang kuad dan kerja keras
  • —  Kesempatan dan peluang

Kegagalan kewirausahaan ditentukan oleh :

  1. —  Kelemahan
  2. —  Peluang
  3. —  Kemampuan
  4. —  pengalaman


Penyebab kegagalan kewirausahaan, antara lain :
  1. Tidak kompeten dalam manajerial
  2. Kurang berpengalaman dalam operasi dan menghasilkan produk
  3. Lemah dalam pengendalian keuangan
  4. Gagal dalam perencanaan program bisnis
  5. Lokasi yang kurang memadai
  6. Kurangnya pengawasaan peralatan
  7. Sikap yang tidak sungguh-sungguh dalam usaha
  8. Ketidakmampuan dalam melakukan peralihan/transisi wirausaha
  9. Keadaan yang menjadikan pesimistik dalam usaha mucul :
  • —  Pendapatan yang tak menentu
  • —  Kerugian akibat hilangnya modal investasi
  • —  Butuh waktu lama untuk recovery
  • —  Kualitas kehidupan yang tetap rendah meski usahannya mantap


Kerugian kewirausahaan
  1. Pengorbanan personal, pada awalnya wirausaha harus bekerja dalam waktu lama dan sibuk, sedikit waktu untuk keluarganya dan relaksasi
  2. Beban tanggung jawab, wirausaha harus mengelola semua fungsi bisnis, baik pemasaran, keuangan, personal maupun pengadaan dan pelatihan
  3. Margin keuntungan yang kecil dan kemungkinan gagal, wirausaha yang menggunakan model sendiri, maka profit margin yang diperoleh relatif kecil dan ada kemungkinan gagal


Keuntungan kewirausahaan
  1. Otonomi, pengelolaan yang merdeka membuat wirausaha menjadi seorang “BOS” yang penuh kepuasan
  2. Tantangan awal dan motif berprestasi, untuk mengembangkan konsep usaha yang menghasilkan keuntungan
  3. —Kontrol finansial, bebas dalam mengelola keuangan dan merasa sebagai kekayaan milik sendiri yang dapat aturannya'

Kamis, 20 Desember 2012

HIDROTERMAL

HIDROTERMAL

Sirkulasi hidrotermal 

Sirkulasi hidrotermal arti yang paling umum adalah sirkulasi air panas; 'hydros' dalam bahasa Yunani yang berarti air dan "'yang berarti panas termos. sirkulasi hidrotermal terjadi paling sering di sekitar sumber panas bumi di dalam lapisan kulit . Hal ini umumnya terjadi di dekat gunung berapi aktivitas, tetapi dapat terjadi di kerak dalam berhubungan dengan intrusi granit , atau sebagai hasil dari Orogeny atau metamorfosa .

Sirkulasi hidrotermal dasar lautan

Sirkulasi hidrotermal di lautan adalah bagian air melalui pertengahan punggungan-samudera sistem. Istilah ini mencakup sirkulasi dari terkenal, suhu tinggi ventilasi perairan dekat puncak bukit, dan menurunkan suhu banyak, baur aliran air melalui sedimen dan dimakamkan basalt lebih lanjut dari puncak-puncak punggungan. Jenis mantan sirkulasi kadang-kadang disebut "aktif", dan yang terakhir "pasif". Dalam kedua kasus prinsipnya adalah sama: tenggelam air laut dingin padat ke basal dari dasar laut dan dipanaskan di kedalaman itu lalu naik kembali ke antarmuka air-laut batu karena densitasnya lebih rendah. Sumber panas untuk ventilasi aktif adalah basal terbentuk baru, dan, untuk ventilasi temperatur tertinggi, yang mendasari magma . Sumber panas untuk ventilasi pasif adalah masih-pendingin basalt yang lebih tua. Studi aliran panas dari dasar laut menunjukkan bahwa basalt dalam kerak samudera mengambil jutaan tahun untuk sepenuhnya dingin karena mereka terus mendukung sistem sirkulasi hidrotermal pasif. 

Ventilasi hidrotermal adalah lokasi di dasar laut di mana cairan hidrotermal campuran ke dalam laut di atasnya. Mungkin yang paling dikenal adalah bentuk ventilasi cerobong disebut sebagai perokok hitam . sirkulasi hidrotermal ini tidak terbatas pada lingkungan punggungan laut. Sumber air untuk geyser dan sumber air panas dipanaskan airtanah convecting di bawah dan lateral air panas ventilasi. Hidrotermal sel konveksi beredar di mana saja ada anomali sumber panas, seperti mengganggu magma atau vulkanik ventilasi, datang ke dalam kontak dengan sistem air tanah. 

Hidrotermal juga mengacu pada transportasi dan sirkulasi air dalam lapisan kulit dalam, umumnya dari daerah batu panas ke daerah dingin batu. 

Penyebab konveksi hal ini dapat :
  • Intrusi magma ke kerak 
  • Radioaktif panas yang dihasilkan oleh massa didinginkan dari granit 
  • Panas dari mantel 
  • Hydraulic kepala dari pegunungan, misalnya, Great Artesian Cekungan 
  • Dewatering dari batuan metamorf yang membebaskan air 
  • Dewatering terkubur sedimen 
Sirkulasi hidrotermal, khususnya di lapisan kulit dalam, adalah penyebab utama dari mineral pembentukan deposit dan landasan teori yang paling di genesis bijih . 

Bijih Hidrotermal

Selama berbagai ahli geologi awal 1900-an bekerja untuk mengklasifikasikan bijih hidrotermal yang diasumsikan telah terbentuk dari larutan air mengalir ke atas. Waldemar Lindgren mengembangkan sebuah klasifikasi yang berdasarkan pada penurunan suhu diinterpretasikan dan kondisi tekanan dari fluida depositoistilah-Nya: hipothermal, mesothermal, epitermal dan teleothermal didasarkan pada penurunan suhu dan peningkatan jarak dari sumber yang mendalam. Hanya epitermal telah digunakan dalam karya-karya terbaru. John Guilbert's Redo 1985 dari yang sistem hidrotermal Lindgren untuk deposito adalah sebagai berikut: 

1. cairan hidrotermal, magmatik atau air meteorik
  • Porfiri tembaga dan deposito lainnya, 200 - 800 ° C, sedang tekanan 
  • Beku metamorf, 300 - 800 ° C, rendahnya - sedang tekanan 
  • menengah ke kedalaman dangkal 
  • Epitermal, dangkal untuk intermediate, 50-300 o C, tekanan rendah 
2. Beredar solusi meteorik dipanaskan
  • Mississippi Valley jenis deposito , 25-200 ° C, tekanan rendah 
  • US Barat uranium , 25-75 ° C, tekanan rendah 
3. Sirkulasi air laut dipanaskan
  • Kelautan ridge deposito , 25-300 ° C, tekanan rendah
Hidrotermal Sintesis 

Sebuah sintetis kuarsa kristal tumbuh dengan metode hidrotermal. Sintesis hidrotermal mencakup berbagai teknik kristalisasi zat dari suhu-tinggi solusi air di tinggi tekanan uap , juga disebut "metode hidrotermal". Istilah " hidrotermal "adalah geologi asal. geokimia dan mineralogists telah mempelajari hidrotermal kesetimbangan fase sejak awal abad kedua puluh. Morey George W. di Carnegie Institution dan kemudian, Percy W. Bridgman di Harvard University melakukan banyak pekerjaan untuk meletakkan dasar yang diperlukan untuk penahanan dari media reaktif pada suhu dan tekanan rentang di mana sebagian besar pekerjaan dilakukan hidrotermal. 

hidrotermal sintesis dapat didefinisikan sebagai metode sintesis kristal tunggal yang tergantung pada kelarutan dalam air panas mineral di bawah tekanan tinggi. pertumbuhan kristal dilakukan dalam suatu alat yang terdiri dari bejana baja disebut autoclave , di mana gizi yang diberikan bersama dengan air . Sebuah gradien temperatur dijaga pada sebaliknya ujung ruang pertumbuhan sehingga akhirnya membubarkan panas gizi dan akhir dingin menyebabkan pertumbuhan bibit untuk mengambil tambahan. 

Pada 1839, kimiawan Jerman Robert Bunsen yang terkandung dalam larutan air berdinding kaca tabung-tebal pada suhu di atas 200 ° C dan pada tekanan di atas 100 bar .  kristal dari barium karbonat dan strontium karbonat bahwa ia tumbuh dalam kondisi merek yang pertama menggunakan pelarut air hidrotermal sebagai media. Lainnya awal laporan pertumbuhan hidrotermal kristal yang oleh Schafhäult pada tahun 1845 dan oleh de Sénarmont pada tahun 1851, yang hanya diproduksi kristal mikroskopis Kemudian Spezzia G. (1905) laporan yang diterbitkan pada pertumbuhan kristal makroskopik. Dia menggunakan solusi dari natrium silikat , kristal alam sebagai benih dan pasokan, dan kapal berlapis perak.. Dengan pemanasan akhir pasokan kapal untuk 320-350 ° C, dan ujung yang lain ke 165-180 ° C, ia memperoleh sekitar 15 mm pertumbuhan baru selama 200 hari. Tidak seperti praktik modern, bagian panas kapal itu di bagian atas. Kontribusi terkenal lainnya yang telah dibuat oleh Nacken (1946), Hale (1948), Brown (1951), Walker (1950) dan Kohman (1955) 

Sejumlah besar senyawa yang termasuk hampir semua kelas telah disintesis dalam kondisi hidrotermal : elemen, sederhana dan kompleks oksida , tungstates , molybdates , karbonat, silikat dll sintesis germanates hidrotermal, umumnya digunakan untuk tumbuh sintetik kuarsa , permata dan kristal tunggal lainnya dengan nilai komersial. Beberapa kristal yang telah efisien tumbuh adalah zamrud , rubi , kuarsa, Alexandrite dan lain-lain. Metode ini telah terbukti sangat efisien baik dalam pencarian senyawa baru dengan sifat fisik tertentu dan dalam investigasi fisikokimia sistematis sistem multikomponen rumit pada temperatur tinggi dan tekanan. 
Peralatan untuk pertumbuhan kristal hidrotermal

















Autoclave untuk pertumbuhan kristal hidrotermal slab.
Keterangan Gambar : 1. Vessel, 2. Kapal, 2. Nutrient, 3. Gizi, 3. Lining, 7. Lapisan, 7. Seeds Benih

Kristalisasi kapal yang digunakan adalah otoklaf. Ini biasanya silinder berdinding tebal baja dengan seal kedap udara yang harus tahan suhu tinggi dan tekanan untuk periode waktu yang lamaSelanjutnya, bahan autoclave harus inert sehubungan dengan pelarut . penutupan adalah elemen yang paling penting dari autoclave tersebut. Banyak desain telah dikembangkan untuk segel, yang paling terkenal sebagai Bridgman segel Dalam kebanyakan kasus baja korosi solusi-digunakan dalam percobaan hidrotermal. Untuk mencegah korosi dari rongga internal autoclave itu, memasukkan pelindung umumnya digunakanHal ini dapat memiliki bentuk yang sama dari autoclave dan cocok rongga internal (masukkan kontak-jenis) atau menjadi "mengambang" menyisipkan jenis yang hanya menempati bagian dari interior autoclaveSisipan dapat dilakukan bebas karbon besi , tembaga , perak , emas , platinum , titanium , kaca (atau kuarsa ), atau Teflon , tergantung pada suhu dan larutan yang digunakan. 

Metode 
  •  Suhu-Metode Beda 
Metode yang paling banyak digunakan dalam sintesis hidrotermal dan kristal tumbuh. jenuh ini dilakukan dengan mengurangi suhu di zona pertumbuhan kristal. gizi ini ditempatkan di bagian bawah autoclave diisi dengan jumlah tertentu pelarut. autoclave yang dipanaskan untuk membuat dua zona suhu.Hara yang larut dalam zona panas dan larutan jenuh di bagian bawah diangkut ke bagian atas dengan gerakan konvektif dari solusi. Solusi yang lebih dingin dan lebih padat di bagian atas autoclave turun sementara counterflow larutan naik. Solusi menjadi jenuh di bagian atas akibat penurunan temperatur dan kristalisasi set masuk 
  • Teknik Suhu-Reduksi 
Dalam teknik kristalisasi terjadi tanpa gradien temperatur antara pertumbuhan dan zona pembubaran. jenuh ini dicapai dengan pengurangan bertahap dalam suhu solusi di autoclave tersebut. Kerugian dari teknik ini adalah kesulitan dalam mengontrol proses pertumbuhan dan memperkenalkan benih kristal. Karena alasan-alasan, teknik ini sangat jarang dipakai. 
  • Teknik metastabil-Phase 
Teknik ini didasarkan pada perbedaan kelarutan antara fase yang akan tumbuh dan yang menjabat sebagai bahan awal. hara terdiri dari senyawa yang tidak stabil termodinamika dalam kondisi pertumbuhanKelarutan fase metastabil melebihi dari fase stabil, dan mengkristal terakhir karena pembubaran fase metastabil. Teknik ini biasanya dikombinasikan dengan salah satu dari dua teknik lain di atas.

Lubang hidrotermal 

Sebuah lubang hidrotermal adalah celah di permukaan bumi ini dari yang geothermally panas air masalah. hidrotermal ventilasi biasanya ditemukan di dekat vulkanik tempat aktif, daerah di mana lempeng tektonik yang bergerak terpisah, laut wastafel, dan hotspot . 

Hidrotermal ventilasi secara lokal sangat umum karena bumi adalah baik secara geologis aktif dan memiliki sejumlah besar air permukaan dan dalam kerak. jenis tanah umum meliputi sumber air panas , fumarol dan geyser . Yang paling terkenal lubang hidrotermal sistem di darat mungkin dalam Taman Nasional Yellowstone di Amerika Serikat . Di bawah laut, ventilasi hidrotermal dapat membentuk fitur yang disebut perokok hitam . 

Sehubungan dengan mayoritas dari laut dalam, wilayah sekitar ventilasi hidrotermal bawah laut secara biologis lebih produktif, 

sering hosting masyarakat kompleks dipicu oleh bahan kimia terlarut dalam cairan lubang. Chemosynthetic archaea bentuk dasar dari rantai makanan, mendukung organisme yang beragam, termasuk raksasa cacing tabung , kerang , limpets dan udang . 


Eksplorasi 

Pada tahun 1949, sebuah survei yang dilaporkan dalam air panas di bagian tengah Laut Merah . Kemudian bekerja di tahun 1960-an menegaskan adanya panas, 60 ° C (140 ° F), garam brines dan logam yang terkait Lumpur. Solusi panas itu berasal dari subseafloor aktif keretakan  . Ekosistem bawah laut sekitar ventilasi hidrotermal ditemukan di sepanjang Galapagos Rift, taji dari Pasifik Rise Timur , pada tahun 1977 oleh sekelompok ahli geologi laut yang dipimpin oleh Jack Corliss dari Oregon State University. Pada tahun 1979, ahli biologi kembali ke keretakan dan digunakan ALVIN , sebuah ONR penelitian  dari Woods Hole Oceanographic Institute , untuk melihat lubang hidrotermal masyarakat dengan mata mereka sendiri. Pada tahun yang sama, ilmuwan Petrus Lonsdale mempublikasikan karya ilmiah pertama tentang kehidupan lubang hidrotermal. Pada tahun 2005, Neptunus Resources NL, sebuah perusahaan eksplorasi mineral, diajukan dan diberikan 35.000 km ² hak eksplorasi atas Arc Kermadec di Selandia Baru s ' Zona Ekonomi Eksklusif untuk eksplorasi dasar laut deposito sulfida besar , sumber baru yang potensial dari timbal - seng - tembaga sulfida terbentuk dari lubang hidrotermal modern ladang. Penemuan lubang angin di Samudra Pasifik lepas pantai Kosta Rika , dinamakan lubang hidrotermal Medusa lapangan (setelah ular-berambut Medusa dari mitologi Yunani ), diumumkan pada bulan April 2007. 

Sifat-sifat fisik 

ventilasi hidrotermal di laut dalam bentuk biasanya sepanjang pegunungan Mid-laut , seperti Rise Pasifik Timur dan Mid-Atlantic Ridge . Ini adalah lokasi di mana dua lempeng tektonik yang divergen dan kerak baru sedang dibentuk. Air bahwa isu-isu dari ventilasi hidrotermal dasar laut terdiri sebagian besar air laut ditarik ke dalam sistem hidrotermal dekat dengan bangunan vulkanik dalam kegagalannya dan porous atau strata sedimen vulkanik, ditambah air magmatik dirilis oleh  magma . 

Dalam sistem hidrotermal darat sebagian air beredar dalam fumarol dan sistem geyser adalah air meteorik ditambah air tanah yang telah percolated ke dalam sistem termal dari permukaan, tetapi juga umumnya mengandung beberapa bagian dari perairan metamorf , sedimen formational brines dan magmatik air yang dirilis oleh magma. proporsi bervariasi dari lokasi ke lokasi. 

Air itu muncul dari sebuah lubang hidrotermal pada suhu berkisar sampai 300 ° C, dibandingkan dengan C 2 ° khas untuk air laut sekitar dalam. Tekanan tinggi pada kedalaman ini secara signifikan memperluas jangkauan termal di mana air tetap cair, sehingga air tidak mendidih. Air pada kedalaman 3.000 m dan suhu menjadi 407 ° C superkritis . Namun peningkatan salinitas air mendorong lebih dekat dengan yang titik kritis.

Beberapa ventilasi cerobong hidrotermal struktur bentuk silinder kasar. Ini bentuk dari mineral yang terlarut dalam cairan lubang. Ketika kontak air super-memanaskan air laut hampir membeku, endapan mineral keluar untuk membentuk partikel yang menambah ketinggian tumpukan. Beberapa struktur cerobong dapat mencapai ketinggian 60 m.  Salah satu contoh seperti lubang yang menjulang adalah "Godzilla", sebuah struktur di Samudera Pasifik dekat Oregon yang meningkat hingga 40 m sebelum terjatuh. 

Tahap awal sebuah lubang cerobong asap mulai dengan pengendapan mineral anhidrit . sulfida dari tembaga , besi dan seng kemudian presipitat dalam celah cerobong asap, sehingga kurang berpori selama waktu. vent pertumbuhan pada urutan 30 cm per hari telah direkam. struktur Cerobong yang memancarkan awan bahan hitam disebut " perokok hitam ", nama untuk warna gelap mereka memancarkan partikel. Para perokok hitam biasanya memancarkan partikel dengan tingkat tinggi mineral sulfur, atau sulfida. "Perokok White" merujuk ke lubang yang memancarkan mineral ringan-hued, seperti yang mengandung barium, kalsium, dan silikon. Ventilasi ini juga cenderung memiliki bulu suhu yang lebih rendah. 

Volcanic Hosted Massif Sulphide

Endapan VHMS

Endapan VHMS atau volcanic hosted  massif sulphide yang dikenal juga dengan nama endapan volcanic-associated, volcanic-hosted, dan volcano-sedimentary-hosted massive sulphide adalah endapan sulfida logam dasar yang terdapat di sekuen vulkanik submarin. Endapan bijih ini memiliki kadar sulfida sangat tinggi sampai mencapai 95% sulfida dari setiap endapan bijihnya. Endapan VHMS biasanya terjadi sebagai lensa polymetallic masif sulfida yang terbentuk pada atau dekat dasar laut di lingkungan vulkanik bawah laut. Endapan ini terbentuk dari cairan logam diperkaya terkait dengan konveksi hidrotermal dasar laut. Host endapan ini dapat berupa batuan vulkanik atau batuan sedimen. Endapan VHMS merupakan sumber utama Zn, Cu, Pb, Ag, dan Au, dan sumber yang signifikan untuk Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, dan Ge.

Endapan VHMS berada di, atau dekat,dasar laut melalui fokus pelepasan panas, larutan hidrotermal yang kaya logam. Untuk alasan ini, endapan VHMS diklasifikasikandi bawah klasifikasi umum dari endapan “Exhalative”, yang termasuk sedimen exhalative (SEDEX) dan endapan nikel (Eckstrand et al., 1995)

Kebanyakan endapan VHMS memiliki komponen sebagai berikut (Gambar 1). biasanya berbentuk gundukan sampai tabular, tubuh terdiri atas batas strata terutama kandungan sulfida yang besar (> 40%), kuarsa dan bagian bawahnya merupakan  phyllosilicates,dan mineral dan oksida besi serta silikat yang mengubah dinding-batu, serta terdapat white smoker dan black smoker.





Gambar 3. Diagram skematik TAG modern endapan sulfida di zona pemekaran samudera. Ini mewakili penampang klasik dari endapan VHMS, dengan semi-massif sampai massif sulfida lensa ditutupi oleh sistem urat stockwork dan berasosiasi dengan alterasi yang berasal dari pipa. Dari Hannington et al. (1998).

Tatanan Geologi & Tektonik

Endapan VHMS ini, berasosiasi dengan back arc rifting, pada tatanan busur vulkanik dan berasosiasi dengan pembentukan kaldera dan struktur di lingkungan submarin. Endapan VHMS ini, juga berasosiasi dengan pemekaran samudera aktif  pada back arc basin serta pegunungan api bawah laut, juga berperan dalam  pembentukan endapan VHMS.

Tatanan tektonik dan geologi  yang paling umum di antara semua jenis endapan VHMS adalah bahwa mereka terbentuk dalam  perpanjangan  tektonik dasar laut, termasuk didalamnya pemekaran lantai samudera  dan lingkungan busur (Gambar 2) (Herzig dan Hannington, 1995), tetapi endapan yang tercatat dalam geologi yang terbentuk terutama di busur samudera, busur  benua dan sistem back-arc (Franklin et al. 1998; Allen et al., 2002). Ini dikarenakan selama aktivitas tektonik  subduksi kebanyakan dari lantai samudera tua tersubduksi .

Proses Hidrotermal  VHMS

Endapan VHMS  berhubungan erat dengan kegiatan vulkanik bawah laut. Larutan hidrotermal yang berperan sangat dipengaruhi oleh fluida magmatis serta aliran air laut yang masuk ke dalam sistem hidrotermal. Fluida meteorik berasal dari air laut yang mempunyai karakter kimiawi tertentu dengan komposisi tinggi kadar klorida dan sulfat. Karena merupakan percampuran antara fluida magmatis dan air laut mengakibatkan fluida mineralisasi mempunyai salinitas tinggi (umumnya 5-20 wt%NaCl eq.) dengan tingginya kadar sulfida & sulfat

Tahapan-tahapan mineralisasi endapan VHMS sebagai berikut :

  1. Air laut meresap melalui rekahan yang terbentuk di lantai samudera
  2. Fluida tersebut dipanaskan oleh batuan bagian dalam yang melebur pada kerak samudera sampai ketinggian temperatur setinggi 400°C
  3. Fluida yang panas perlahan naik ke permukaan
  4. Lalu memancar ke permukaan dan terbentuklah black smoker



Gambar 4 & 5. Menggambarkan proses sistem hidrotermal yang terjadi di bawah laut yang menghasilkan endapan VHMS

Proses urat hidrotermal ini menghasilkan 2 tipe proses geologi, yaitu black smoker dan white smoker.

Perbedaan antara black smoker dan white smoker :
  •  Pada black smoker :
  1. mempunyai suhu lebih dari 360 0C
  2. endapan mineral yang dihasilkan, yaitu pirit (FeS2), kalkopirit (CuFeS2), anhidrit (CaSO4)
  3. mineral yang dihasilkan yaitu mineral sulfida
  • Pada white smoker:
  1. memiliki suhu antara 260-300 0C.
  2. endapan mineral yang dihasilkan yaitu pirit (FeS2) dan sphalerit (ZnS).
  3. kaya akan zinc
  4. lebih dalam berada pada pinggir sekuen vulkanik submarin
Tipe-tipe Endapan VHMS

Terdapat tipe-tipe endapan VHMS di dunia ini berdasarkan pada litologi footwall dan sistem geotektonik :
  1. Cyprus type : berhubungan dengan tholeiitic batuan basalt dalam sekuen ofiolit(back arc spreading ridge), e.g. Troodos Massif (Siprus).
  2. Besshi-type : berasosiasi dengan lempeng vulkanik dan turbidit kontinental, e.g. Sanbagwa (Jepang).
  3. Kuroko-type : berasosiasi dengan batuan vulkanik felsik terutama kubah rhyolite (back arc rifting), e.g. Kuroko deposits (Jepang).
  4. Primitive-type : berasosiasi dengan differensiasi magma, e.g Canadian Archean rocks.

Karakteristik setiap tipe endapan ditunjukkan pada tabel 1.

Tabel 1. Tipe endapan Vulkanik Hosted Massif Sulphide – terminologi konvensional (dimodifikasi dari Hutchinson, 1980)

Mineralogi ubahan & Urat 

Mineral ubahan dan tekstur yang terdapat di urat, adalah sebagai berikut :
1. Mineral sulfida dominan : pirit, pirhotit, markasit, arsenopirit,kalkopirit, sfalerit, galena
2. Mineral sulfat : barit, anhidrit
3. Mineral lempung : smektit, illit, serisit (temperatur meningkat)
4. lain-lain : kuarsa, klorit, albit; zeolit terbentuk pada bagian yang lebih dingin
5. Tekstur: tekstur-tekstur yang mencirikan akumulasi, pertumbuhan (growth) dan pengendapan (deposition) merupakan penciri endapan VHMS. Contoh : pirit bertekstur koloform, growth-zoned sphalerite, perlapisan sulfida (clastic bedding & banding) di endapan Kuroko maupun endapan VHMS lain yang tidak terdeformasi.

mineralisasi Fe dan Fe-Cu bertekstur stockwork yang berkembang dibagian footwall (dari endapan VHMS) sama halnya dengan mineralisasi epitermal dimana proses pendidihan dari fluida hidrotermal merupakan proses pembentukan mineral yang penting.

Zonasi Alterasi/Ubahan Endapan VHMS
Gambar 6. Penampang endapan Kuroko (Shirozo,1974;Urabe dkk, 1983, dikutip dari Kingstone & Morrison, 1997)

Zone 1 : smektit, zeolit, barit, oksida besi, silika

zone 2 : smektit – illit, barit, anhidrit, kuarsa,klorit

zone 3 : serisit – illit, barit, albit, klorit, anhidrit (epidot), kuarsa

Meskipun Endapan VHMS  memiliki berbagai bentuk, namun endapan ini mempunyai pola yang konsisten dalam hal zonasi logam, tekstur bijih maupun ubahan (gambar 6).

Penyebaran logam yang radial (dari bagian dalam) yaitu: zone Fe-rich (kondisi lebih panas) berturut-turut kemudian zone Fe-Cu, Cu-Pb-Zn, hingga zone  Pb-Zn- Ba dibagian luar dan lebih dingin.

Emas pada VHMS hadir berasosiasi dengan mineral lain, dibagian yang berbeda pula dari endapan ini.

- dibagian barit (atas) : berupa elektrum

- di lensa-lensa bagian tengah dan atas : berupa inklusidalam arsenopirit dan berasosiasi dengan sfalerit

- dibagian bawah, emas hadir berupa elektrum atau tellurid, berasosiasi dengan kalkopirit dan/tanpa pirit (Huston, et al.1992).

Pola ubahan : umumnya terdeformasi, termetamorfosis lemah, kecuali endapan tipe Kuroko

- outer zones : zeolit, smektit, silika (kristobalit)

-  inner zone : interlayered illite-smectite, klorit, kuarsa, illite, albit, anhidrit

-  inner footwall : serisit (temperatur lebih tinggi); epidot dan fuchsite dapat terbentuk pada kondisi ini dengan catatan batuannya basaltik.

Makalah Geothermal

Pengertian Geothermal
Geothermal berasal dari bahasa Yunani yang terdiri dari 2 kata yaitu geo yang berarti bumi dan thermal yang artinya panas, berarti geothermal adalah panas yang berasal dari dalam bumi. Proses terbentuknya energi panas bumi sangat berkaitan dengan teori tektonik lempeng yaitu teori yang menjelaskan mengenai fenomena-fenomena alam yang terjadi seperti gempa bumi, terbentuknya pegunungan, lipatan, palung, dan juga proses vulkanisme yaitu proses yang berkaitan langsung dengan geothermal. Berdasarkan penelitian gelombang seismik, para peneliti kebumian dapat mengetahui struktur bumi dari luar sampai ke dalam, yaitu kerak pada bagian luar, mantel, dan inti pada bagian paling dalam. Semakin ke dalam bumi (inti bumi), tekanan dan temperature akan meningkat. Untuk kita ketahui, Temperature pada inti bumi berkisar ± 4200 C. Panas yang terdapat pada inti bumi akan ditransfer ke batuan yang berada di bagian mantel dan kerak bumi. Batuan yang memiliki titik lebur lebih rendah dari temperature yang diterima dari inti bumi akan meleleh dan lelehan dari batuan tersebutlah yang kita kenal dengan magma. Magma memiliki densitas yang lebih rendah dari batuan, otomatis batuan yang telah menjadi magma tadi akan mengalir ke permukaan bumi. Jika magma sampai ke permukaan maka magma tersebut berubah nama dengan sebutan lava (contoh lava yang sering kita lihat jika terjadi erupsi (letusan) gunung api.

Energi panas bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam bumi. Energi panas bumi ini berasal dari aktivitas tektonik di dalam bumi yang terjadi sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan bumi. Energi ini telah dipergunakan untuk memanaskan (ruangan ketika musim dingin atau air) sejak peradaban Romawi, namun sekarang lebih populer untuk menghasilkan energi listrik. Sekitar 10 Giga Watt pembangkit listrik tenaga panas bumi telah dipasang di seluruh dunia pada tahun 2007, dan menyumbang sekitar 0.3% total energi listrik dunia.

Energi panas bumi cukup ekonomis dan ramah lingkungan, namun terbatas hanya pada dekat area perbatasan lapisan tektonik.

Pangeran Piero Ginori Conti mencoba generator panas bumi pertama pada 4 July 1904 di area panas bumi Larderello di Italia. Grup area sumber panas bumi terbesar di dunia, disebut The Geyser, berada di California, Amerika Serikat. Pada tahun 2004, lima negara (El Salvador, Kenya, Filipina, Islandia, dan Kostarika) telah menggunakan panas bumi untuk menghasilkan lebih dari 15% kebutuhan listriknya.

Hubungan antara Geothermal dan Energi Panas Bumi.

Secara singkat geothermal didefinisikan sebagai panas yang berasal dari dalam bumi. Sedangkan energi panas bumi adalah energi yang ditimbulkan oleh panas tersebut. Panas bumi menghasilkan energi yang bersih (dari polusi) dan berkesinambungan atau dapat diperbarui. Sumberdaya energi panas bumi dapat ditemukan pada air dan batuan panas di dekat permukaan bumi sampai beberapa kilometer di bawah permukaan.Bahkan jauh lebih dalam lagi sampai pada sumber panas yang ekstrim dari batuan yang mencair atau magma. Untuk menangkap panas bumi tersebut harus dilakukan pemboran sumur seperti yang dilakukan pada sumur produksi minyakbumi. Sumur tersebut menangkap air tanah yang terpanaskan, kemudian uap dan air panas dipisahkan. Uap air panas dibersihkan dan dialirkan untuk memutar turbin. Air panas yang telah dipisahkan dimasukkan kembali ke dalam reservoir melalui sumur injeksi yang dapat membantu untuk menimbulkan lagi sumber uap. Menurut Undang-undang Nomor 27 Tahun 2003 tentang panas bumi, geothermal adalah sumber energi panas yang terkandung di dalam air panas, uap air dan batuan bersama mineral ikutan dan gas lainnya yang secara genetik semuanya tidak dapat dipisahkan dalam suatu sistem panas bumi dan untuk pemanfaatannya diperlukan proses penambangan. Panas bumi mengalir secara kontinyu dari dalam bumi menuju kepermukaan yang manifestasinya dapat berupa: gunung berapi, mata air panas, dan geyser.

Struktur lapisan bumi

Secara struktur, lapisan bumi dibagi menjadi tiga bagian, yaitu kerak bumi (crush), selimut (mantle), dan inti bumi (core). Suhu di bagian bawah kerak bumi mencapai 1.100oC. Lapisan kerak bumi dan bagian di bawahnya hingga kedalaman 100 km dinamakan litosfer. Selimut bumi memiliki tebal mencapai 2.900 km dan merupakan lapisan batuan padat. Suhu di bagian bawah selimut bumi mencapai 3.000 oC. Inti bumi terdiri dari material cair yang terdapat pada kedalaman 2900-5200 km. Inti dalam ini terdiri dari nikel dan besi yang suhunya mencapai 4.500 oC. Secara universal, setiap penurunan 1 km kedalaman ke perut bumi temperatur naik sebesar 25 – 30ºC. Atau setiap kedalaman bertambah 100 meter temperatur naik sekitar 2,5 sampai 3ºC. Jadi semakin jauh ke dalam perut bumi suhu batuan akan makin tinggi.Bila suhu di permukaan bumi adalah 27ºC maka untuk kedalaman 100 meter suhu bisa mencapai sekitar 29,5ºC. Pertambahan panas ini disebut gradien geothermal.



Di dalam kulit bumi, ada kalanya aliran air berada dekat dengan batu-batuan panas yang temperaturnya bisa mencapai 148°C. Air tersebut tidak menjadi uap (steam) karena tidak ada kontak dengan udara. Bila air panas tersebut keluar ke permukaan bumi melalui celah atau retakan di kulit bumi, maka akan timbul air panas yang biasa disebut dengan hot spring. Air panas alam (hot spring) ini biasa dimanfaatkan untuk kolam air panas dan banyak pula yang sekaligus dijadikan tempat wisata.

Apabila air panas alam mengalami kontak dengan udara karena fraktur atau retakan, maka semburan akan keluar melalui retakan tersebut dalam bentuk air panas dan uap panas (steam). Air panas dan steam inilah yang kemudian dimanfaatkan sebagai sumber pembangkit tenaga listrik. Agar energi geotermal dapat dikonversi menjadi energi listrik, tentunya diperlukan sebuah sistem pembangkitan listrik (power plants). Apabila air panas alam mengalami kontak dengan udara karena fraktur atau retakan, maka semburan akan keluar melalui retakan tersebut dalam bentuk air panas dan uap panas (steam). Air panas dan steam inilah yang kemudian dimanfaatkan sebagai sumber pembangkit tenaga listrik. Agar energi geotermal dapat dikonversi menjadi energi listrik, tentunya diperlukan sebuah sistem pembangkitan listrik (power plants). Teknologi yang digunakan dalam pembangkit listrik ini adalah Dry Steam Power plant, Flash Steam Power plant, dan Bynary-cycle Power Plant.

Pada prinsipnya, Pembangkit Listrik Tenaga Uap (PLTU) sama dengan Pembangkit Listrik Tenaga Panas bumi (PLTP). Yang membedakannya adalah pada PLTU uap dibuat dipermukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panas bumi. Pembangkit yang digunakan untuk merubah panas bumi menjadi tenaga listrik secara umum mempunyai komponen yang sama dengan power plant lain yang bukan berbasis panas bumi, yaitu terdiri dari generator, heat exchanger, chiller, pompa, dsb.

Seperti halnya pencarian bahan tambang yang lain, untuk sampai kepada tahap produksi perlu dilakukan survei atau eksplorasi. Cara untuk memperoleh sumber panas bumi adalah dengan eksplorasi yang harus dilakukan dalam beberapa tahap. Tahapan survei eksplorasi sumber panas bumi adalah seperti berikut:
Survei pendahuluan dengan interpretasi dan analisa foto udara dan citra satelit
Kajian kegunungapian atau studi volkanologi
Pemetaan geologi dan strutur geologi
Survei geokimia
Survei geofisika
Pemboran eksplorasi

Faktor penting yang sangat mempengaruhi keberhasilan produksi tenaga listrik dari energi panas bumi adalah besarnya gradien geotermal serta besarnya panas yang dihasilkan. Semakin besar gradien geotermal maka akan semakin dangkal sumur produksi yang dibutuhkan, dan semakin tinggi temperatur yang dapat ditangkap sampai ke permukaan, maka akan semakin mengurangi biaya produksi di permukaan.

Energi panas bumi dapat menyediakan sumber tenaga yang bersih dan terbarukan serta dapat memberikan keuntungan yang signifikan. Emisi energi panas bumi tak mengandung polutan kimiawi atau tak mengeluarkan limbah dan hanya mengandung sebagian besar air yang diinjeksikan kembali kedalam bumi. Energi panas bumi adalah sumber tenaga yang andal yang dapat mengurangi kebutuhan impor bahan bakar fosil. Panas bumi juga dapat terbarukan karena praktis sumber panas alami dari dalam bumi tidak ada batasnya.


 Beberapa keunggulan sumber energi panas bumi adalah:
Menyediakan tenaga listrik yang andal dengan pembangkit yang tidak memakan tempat
Terbarui dan berkesinambungan
Memberikan tenaga beban dasar yang konstan
Memberikan keuntungan ekonomi secara lokal
Dapat dikontrol secara jarak jauh
Tersedia melimpah
Nyaris tanpa polusi
Menghasilkan karbon dioksida 65 kali lebih kecil dari batubara

Faktor yang masih menghambat perkembangan industri listrik tenaga panas bumi di Indonesia antara lain adalah mahalnya biaya eksplorasi terutama untuk pemboran eksplorasi. Besarnya biaya pemboran eksplorasi berbanding secara eksponensial dengan kedalaman, padahal untuk mendapatkan temperatur yang tinggi harus membor lebih dalam. Konsekuensinya sumur eksplorasi panas bumi di Indonesia masih terlalu sedikit sehingga tingkat ketidak-pastian keberhasilan masih tinggi. Kendala yang lain adalah investor ragu dengan proyek di Indonesia karena beaya eksplorasi dan pengembangan harus ditanggung dan tidak kembali sampai energi terjual kepada pelanggan.

Menurut Direktorat Inventarisasi Sumber Daya Mineral (DIM), saat ini diperkirakan total potensi energi panas bumi Indonesia sebesar 27000 MW.Potensi ini setara dengan 40% dari cadangan panas bumi dunia. Lokasi panas bumi di Indonesia tersebar di 252 tempat mengikuti jalur gunung api yang membentang dari Sumatra, Jawa, Nusa Tenggara, Sulawesi sampai Maluku. Dari 252 lokasi panas bumi yang ada, baru 31% yang telah dilakukan survei secara rinci. Sehingga jumlah potensi tersebut akan berubah sesuai dengan hasil survey

Prinsip Kerja Panas Bumi

Uap hasil penguapan air tanah yang terdapat di dalam tanah akan tetap berada di dalam tanah jika tidak ada saluran yang menghubungkan daerah tempat keberadaan uap dengan permukaan. Uap yang terkurung akan memiliki nilai tekanan yang tinggi dan apabila pada daerah tersebut kita bor sehingga ada saluran penghubung ke permukaan, maka uap tersebut akan mengalir keluar. Uap yang mengalir dengan cepat dan mempunyai entalpi inilah yang kita mamfaatkan dan kita salurkan untuk memutar turbin sehingga dihasilkanlah energi listrik (tentunya ada proses-proses lain sebelum uap memutar turbin). Setelah uap memutar turbin dan uap telah kehilangan tekanan dan entalpi maka uap tersebut akan mengalami proses pengembunan sehingga uap akan berubah kembali menjadi air. Air hasil pendinginan (condensattion) yang didinginkan dengan condensator akan dikumpulkan dan akan diinjeksikan kembali ke dalam tanah, sehingga volume air tanah tidak akan berkurang secara drastis. Salah satunya Karena proses injeksi inilah kenapa energi geothermal disebut dengan energi yang terbarukan (renewable) dan energi yang ramah lingkungan.


 Energi panas bumi yang ada di Indonesia pada saat ini dapat dikelompokkan menjadi:

1. Energi panas bumi “uap basah”

Pemanfaatan energi panas bumi yang ideal adalah bila panas bumi yang keluar dari perut bumi berupa uap kering, sehingga dapat digunakan langsung untuk menggerakkan turbin generator listrik. Namun uap kering yang demikian ini jarang ditemukan termasuk di Indonesia dan pada umumnya uap yang keluar berupa uap basah yang mengandung sejumlah air yang harus dipisahkan terlebih dulu sebelumdigunakan untuk menggerakkan Uap basah yang keluar dari perut bumi pada mulanya berupa air panas bertekanan tinggi yang pada saat menjelang permukaan bumi terpisah menjadi kira-kira 20 % uap dan 80 % air. Atas dasar ini maka untuk dapat memanfaatkan jenis uap basah ini diperlukan separator untuk memisahkan antara uap dan air. Uap yang telah dipisahkan dari air diteruskan ke turbin untuk menggerakkan generator listrik, sedangkan airnya disuntikkan kembali ke dalam bumi untuk menjaga keseimbangan air dalam tanah.

2. Energi panas bumi “air panas”

 Air panas yang keluar dari perut bumi pada umumnya berupa air asin panas yang disebut “brine” dan mengandung banyak mineral. Karena banyaknya kandungan mineral ini, maka air panas tidak dapat digunakan langsung sebab dapat menimbulkan penyumbatan pada pipa-pipa sistim pembangkit tenaga listrik. Untuk dapat memanfaatkan energi panas bumi jenis ini, digunakan sistem biner (dua buah sistem utama) yaitu wadah air panas sebagai sistem primemya dan sistem sekundernya berupa alat penukar panas (heat exchanger) yang akan menghasilkan uap untuk menggerakkan turbin. Energi panas bumi “uap panas” bersifat korosif, sehingga biaya awal pemanfaatannya lebih besar dibandingkan dengan energi panas bumi jenis lainnya.

3.Energi panas bumi “batuan panas”

Energi panas bumi jenis ini berupa batuan panas yang ada dalam perut bumi akibat berkontak dengan sumber panas bumi (magma). Energi panas bumi ini harus diambil sendiri dengan cara menyuntikkan air ke dalam batuan panas dan dibiarkan menjadi uap panas, kemudian diusahakan untuk dapat diambil kembali sebagai uap panas untuk menggerakkan turbin. Sumber batuan panas pada umumnya terletak jauh di dalam perut bumi, sehingga untuk memanfaatkannya perlu teknik pengeboran khusus yang memerlukan biaya cukup tinggi.

Karakteristik Sumber Panas Bumi

Langkah awal dalam rangka penyiapan konservasi energi panas bumi adalah studi sistem panas bumi itu sendiri terutama melalui pemahaman terhadap karakteristik sumber panas bumi sebagai bagian penting dalam sistem, diantaranya berkaitan dengan :

1. Dapur magma sebagai sumber panas bumi

2. Kondisi hidrologi

3. Manifestasi panas bumi

4. Reservoir

5. Umur (lifetime) sumber panas bumi.

Dapur magma sebagai sumber panas bumi

Pada dasarnya energi panas yang dihasilkan oleh suatu wilayah gunungapi mempunyai kaitan erat dengan sistem magmatik yang mendasarinya, dan salah satu karakteristik penunjang potensi panas bumi adalah letak dapur magmanya di bawah permukaan sebagai sumber panas (heat source).

Terutama di daerah-daerah yang terletak di jalur vulkanik-magmatik, ukuran dapur magma itu sendiri berhubungan erat dengan kegiatan vulkanisma. Dalam perjalanannya menuju permukaan, magma akan mengalami proses diferensiasi dan berevolusi menghasilkan susunan kimiawi yang berbeda sesuai kedalaman. Dapur magma yang terbentuk pada kedalaman menengah kemungkinan terkontaminasi oleh bahan-bahan kerak bumi yang kaya akan silika dan gas, sehingga bersifat lebih eksplosif. Volumenya dapat diperkirakan dari kenampakan-kenampakan fisik berupa ukuran kaldera, distribusi lubang kepundan, pola rekahan, pengangkatan topografi dan hasil erupsi gunungapi; atau melalui cara identifikasi dengan metoda geofisika (bayangan seismik atau anomali geofisika lainnya.

Magma akan mengalirkan sejumlah panas yang signifikan ke dalam batuan-batuan pembentuk kerak bumi; makin besar ukuran dapur magma maka semakin besar pula sumber daya panasnya, dimana secara ekonomis menjadi ukuran jumlah energi yang dapat dimanfaatkan dari suatu sumber panas bumi.

Kondisi Hidrologi

Pada busur kepulauan dengan kegiatan vulkanisma/magmatisma masih berjalan, dimana magma di bawah permukaan berinteraksi dengan lokasi-lokasi bersiklus basah atau cukup persediaan air; akan terjadi pendinginan magma dan proses hidrotermal untuk menciptakan lingkungan fasa uap-air bersuhu/bertekanan tertentu, yang memberikan peluang terjadinya sistem panas bumi aktif.

Demikian pentingnya peranan air dalam mempertahankan kelangsungan sistem panas bumi sehingga sangat dipengaruhi oleh siklus hidrologi, yang diyakini dapat terjaga keseimbangannya apabila pasokan dari lingkungan tidak terhenti. Keberadaan sumber-sumber air lainnya seperti air tanah, air connate, air laut/danau, es atau air hujan akan sangat dibutuhkan sebagai pemasok kembali (recharge) air yang hilang mengingat kandungan air dalam magma (juvenile) tidak mencukupi jumlah yang dibutuhkan dalam mempertahankan proses interaksi air – magma.

Kondisi hidrologi pada suatu sistem panas bumi sangat dipengaruhi oleh bentang alam lingkungan dimana terjadiya, dan berperan terutama dalam membentuk manifestasi-manifestasi permukaan yang dapat memberikan petunjuk tentang keberadaan sumber panas bumi di bawah permukaan. Pada daerah berelief (topografi) rendah, manifestasi-manifestasi panas bumi dapat berbentuk mulai dari kolam air panas dengan pH mendekati netral, pengendapan sinter silika hingga zona-zona uap mengandung H2S yang berpeluang menghasilkan fluida bersifat asam; menandakan bahwa sumber fluida hidrotermal/panas bumi berada relatif tidak jauh dari permukaan. Sementara pada daerah dengan topografi tingi (vulkanik andesitik) dimana kenampakan manifestasi berupa fumarol atau solfatara, menggambarkan bahwa sumber panas bumi berada pada kondisi relatif dalam; yang memerlukan waktu dan jarak panjang untuk mencapai permukaan.

Manifestasi panas bumi

Bukti kegiatan panas bumi dinyatakan oleh manifestasi-manifestasi di permukaan, menandakan bahwa fluida hidrotermal yang berasal dari reservoir telah keluar melalui bukaan-bukaan struktur atau satuan-satuan batuan berpermeabilitas. Beberapa manifestasi menjadi penting untuk diketahui karena dapat digunakan sebagai indikator dalam penentuan suhu reservoir panas bumi, diantaranya :

1. Mata air panas, dapat terbentuk dalam beberapa tingkatan mulai dari rembesan hingga menghasilkan air dan uap panas yang dapat dimanfaatkan secara langsung (pemanas ruangan/rumah pertanian atau air mandi) atau penggerak turbin listrik; dan yang paling penting adalah bahwa dengan menghitung/mengukur suhunya dapat diperkirakan besaran keluaran energi panas (thermal energy output) dari reservoir di bawah permukaan.

2. Sinter silika, berasal dari fluida hidrotermal bersusunan alkalin dengan kandungan cukup silika; diendapkan ketika fluida yang jenuh silika amorf mengalami pendinginan dari 100o ke 50oC. Endapan ini dapat digunakan sebagai indikator yang baik bagi keberadaan reservoir bersuhu >175oC.

3. Travertin, adalah jenis karbonat yang diendapkan di dekat atau permukaan; ketika air meteorik yang sedang bersirkulasi sepanjang bukaan-bukaan struktur mengalami pemanasan oleh magma dan bereaksi dengan batuan karbonat. Biasanya terbentuk sebagai timbunan/gundukan di sekitar mata air panas bersuhu sekitar 30o – 100oC, dapat digunakan sebagai indikator suhu reservoir panas bumi berkapasitas energi kecil yang terlalu lemah untuk menggerakkan turbin listrik tetapi dapat dimanfaatkan secara langsung.

4. Kawah dan endapan hidrotermal. Kedua jenis manifestasi ini erat hubungannya dengan kegiatan erupsi hidrotermal dan merupakan indikator kuat dari keberadaan reservoir hidrotermal aktif. Kawah dihasilkan oleh erupsi berkekuatan supersonik karena tekanan uap panas yang berasal dari reservoir hidrotermal dalam (kedalaman ±400 m, suhu 230oC) melampaui tekanan litostatik, ketika aliran uap tersebut terhambat oleh lapisan batuan tidak permeabel (caprock). Sedangkan endapan hidrotermal (jatuhan) dihasilkan oleh erupsi berkekuatan balistik dari reservoir hidrotermal dangkal (kedalaman ±200 m, suhu 195oC), ketika transmisi tekanan uap panas melebihi tekanan litostatik karena tertutupnya bukaan-bukaan batuan yang dilaluinya.

Reservoir

Reservoir adalah suatu volume batuan di bawah permukaan bumi yang mempunyai cukup porositas dan permeabilitas untuk meloloskan fluida (sumber energi panas bumi) yang terperangkap didalamnya; diklasifikasikan menjadi 3 (tiga) yaitu :

1. Entalpi rendah, mempunyai batas suhu <125oC dengan rapat daya spekulatif 10 MW/km2 dan konversi energi 10%.

2. Entalpi sedang, mempunyai kisaran suhu 125 ? 225oC dengan rapat daya spekulatif 12,5 MW/km2 dan konversi energi 10%.

3. Entalpi tinggi, mempunyai batas suhu >225oC dengan rapat daya spekulatif 15 MW/km2 dan konversi energi 15%.

Potensi Panas Bumi

Potensi panas bumi Indonesia dapat dibagi dalam 2 (dua) kelas, yaitu : sumber daya dan cadangan; yang masing-masing dibagi lagi menjadi subkelas-subkelas.

Kriteria sumber daya terdiri dari :

1. Spekulatif, dicirikan oleh terdapatnya manifestasi panas bumi aktif dimana luas reservoir dihitung dari data geologi yang tersedia dan rapat dayanya berdasarkan asumsi.

2. Hipotesis, dicirikan oleh manifestasi panas bumi aktif dengan data dasar hasil survei regional geologi, geokimia dan geofisika. Luas daerah prospek ditentukan berdasarkan penyebaran manifestasi dan batasan geologi, sementara penentuan suhu berdasarkan geotermometer.

Kriteria cadangan terdiri dari :

1. Terduga, dibuktikan oleh data pemboran landaian suhu dimana estimasi luas dan ketebalan reservoir serta parameter fisika batuan dan fluida dilakukan berdasarkan data ilmu kebumian terpadu, yang digambarkan dalam bentuk model tentatif.

2. Mungkin, dibuktikan oleh sebuah sumur eksplorasi yang berhasil dimana estimasi luas dan ketebalan reservoir didasarkan pada data sumur dan hasil penyelidikan ilmu kebumian rinci terpadu. Parameter batuan, fluida dan suhu reservoir diperoleh dari pengukuran langsung dalam sumur.

3. Terbukti, dibuktikan oleh lebih dari satu sumur eksplorasi yang berhasil mengeluarkan uap/air panas, dimana estimasi luas dan ketebalan reservoir didasarkan kepada data sumur dan hasil penyelidikan ilmu kebumian rinci terpadu. Parameter batuan dan fluida serta suhu reservoir didapatkan dari data pengukuran langsung dalam sumur dan atau laboratorium.

Umur Kegiatan (lifetime) dan Metoda estimasi Potensi Panas Bumi

Walaupun sistem panas bumi menghasilkan sumber daya energi yang selalu terbarukan, tidak berarti akan berumur tanpa batas; dengan demikian harus ada upaya untuk mengetahui umur (lifetime) kegiatan suatu sumber panas bumi. Penggunaan metoda K/Ar dan Rb/Sr adalah salah satu teknik paling popular dikenal untuk penentuan umur (age dating), yang diterapkan terhadap mineral-mineral hidrotermal tertentu dari inti (core) bor batuan-batuan terubah hidrotermal, dapat dilakukan dengan cara :

a. Tidak langsung dari suatu sistem panas bumi aktif. Penentuan umur dengan cara ini dilakukan melalui studi banding umur relatif mineral-mineral ubahan tertentu hasil proses hidrotermal terhadap umur batuan reservoir.

b. Analogi pengukuran atau perkiraan lamanya kegiatan dalam suatu sistem fosil panas bumi, terutama yang berkaitan dengan cebakan bijih hidrotermal. Dilakukan melalui studi tentang peran bukaan struktur dalam proses hidrotermal dan pembentukan cebakan mineral, serta perbedaan episoda pengendapan mineral-mineral ubahan/bijih, penutupan bukaan-bukaan struktur dan pembentukan kembali bukaan/rekahan.

Estimasi terhadap potensi panas bumi dilakukan dalam rangka penentuan kualitasnya, sehingga dapat diketahui pemanfaatannya baik sebagai sumber energi listrik maupun pemakaian langsung dalam kaitannya dengan upaya optimalisasi produksi energi panas bumi. Secara garis besar metoda estimasi dilakukan melalui perhitungan volumetrik dan simulasi numerik.

Metoda estimasi volumetrik 

Metoda estimasi volumetrik dibagi menjadi 3 yaitu : 
Metoda perbandingan, yaitu menye-tarakan suatu daerah panas bumi baru yang belum diketahui potensinya dengan lapangan yang diketahui berpotensi, dimana keduanya memiliki kemiripan kondisi geologi. Metoda ini digunakan untuk menghitung potensi energi panas bumi dengan klasifikasi sumber daya spekulatif.

Model lumped parameter, didasarkan pada anggapan bahwa reservoir panas bumi berupa bentuk kotak sehingga perhitungan volume = luas sebaran x ketebalan; dengan syarat bahwa : (a) kandungan energi panas dalam bentuk fluida berada dalam batuan; dan (b) kandungan massa fluida terdapat dalam resrvoir. Metoda ini digunakan untuk menghitung potensi energi panas bumi dengan kategori sumber daya hipotesis, cadangan terduga, mungkin dan terbukti.

Metoda estimasi simulasi numerik. Metoda ini terutama digunakan pada kondisi dimana pada suatu lapangan panas bumi telah tersedia beberapa sumur eksplorasi dengan semburan fluida panas. Data sumur dibuat simulasi, yang selanjutnya digambar dalam sistem kisi (grid) dan bentuk tiga dimensi. Dengan metoda ini dapat dihitung potensi cadangan terbukti dari suatu reservoir, termasuk umur, optimasi produksi dan sistem distribusi panasnya.

Kendala-kendala yang mungkin terjadi pada tahap produksi

Saluran pipa adalah salah satu fasilitas penting untuk transport uap menuju turbin, yang dapat mengalami kendala atau kerusakan selama menjalankan fungsinya. Penyebab terjadinya kendala/kerusakan tersebut diantaranya adalah : kesalahan rancangan/desain, masalah konstruksi, pengoperasian yang tidak tepat, suhu uap dan pengendapan (scaling) bahan-bahan kimiawi tertentu (silika, kalsit atau belerang); dimana semuanya akan berdampak kepada menurunnya daya tahan pipa tersebut. Dua faktor terakhir masing-masing dapat menimbulkan penipisan/korosi dan penyempitan pada pipa penyalur fluida. Apabila terjadi kendala pada jalur pipa utama transportasi dan tidak ditangani secara proporsional, maka akan menyebabkan penurunan produktifitas eksploitasi; bahkan kemung-kinan kehilangan secara signifikan nilai ekonomis dengan akibat penutupan operasional suatu perusahaan pembangkit listrik.

Harga Jual Panas Bumi

Purnomo mengatakan, secara bertahap harga jual panas bumi (geotermal) akan mencapai 5 dollar AS per kWh dalam kurun 30 tahun kontrak pembangkit listrik. Pada kurun 10 tahun pertama produksi, harga jual geotermal kemungkinan masih di atas 5 sen dollar AS per kWh guna pengembalian investasi, namun secara bertahap akan turun menjadi 5 sen dollar per kWh. (dikutip dari Kompas, 24 Oktober 2007)

Pembangkit listrik tenaga panas bumi hanya dapat dibangun di sekitar lempeng tektonik di mana temperatur tinggi dari sumber panas bumi tersedia di dekat permukaan. Pengembangan dan penyempurnaan dalam teknologi pengeboran dan ekstraksi telah memperluas jangkauan pembangunan pembangkit listrik tenaga panas bumi dari lempeng tektonik terdekat. Efisiensi termal dari pembangkit listrik tenaga panas bumi cenderung rendah karena fluida panas bumi berada pada temperatur yang lebih rendah dibandingkan dengan uap atau air mendidih. Berdasarkan hukum termodinamika, rendahnya temperatur membatasi efisiensi dari mesin kalor dalam mengambil energi selama menghasilkan listrik. Sisa panas terbuang, kecuali jika bisa dimanfaatkan secara lokal dan langsung, misalnya untuk pemanas ruangan. Efisiensi sistem tidak mempengaruhi biaya operasional seperti pembangkit listrik tenaga bahan bakar fosil.

Energi panas bumi pada umumnya harus di konversikan terlebih dahulu menjadi tenaga listrik. Uap air yang dimiliki sumur panas bumi memiliki tekanan tinggi yang di pergunakan untuk memutar turbin generator listrik. Dalam bentuk aslinya, energi panas bumi yang berupa uap air bertekanan tinggi, tidak mungkin di transportasikan seperti halnya BBM atau gas. Baru setelah di konversikan menjadi tenaga listrik, bentuk energi yang seperti ini dapat di alirkan ke tempat-tempat yang jauh melalui jaringan transmisi listrik.

Konversi ini dilaksanakan dalam pembangkit listrik tenaga panas bumi (PLTP) dimana tenaga uap panas bumi di gunakan untuk memutar turbin generator listrik. Secara garis besar sifat panas bumi ini dapat dikelompokan menjadi dua, yaitu jenis dominasi uap dan dominasi air. Agar dapat dimanfaatkan secara ekonomis, sumber panasbumi harus memenuhi berbagai persyaratan antara lain:

 Memiliki suhu yang relative tinggi (minimal 2300 )

 Bertekanan uap yang cukup besar (minimal 35 atmosfir)

 Mempunyai volume uap yang cukup banyak (10 ton/jam setara dengan 1000 KW listrik)

 Kedalamanya tidak melebihi 2500 meter

 Fluidanya tidak bersifat korosif

 Lokasinya sesuai dengan kepentingan konsumen

Kekayaan alam Indonesia memang melimpah ruah, dari mulai sumber daya alam sampai sumber daya mineral semua tersedia. Sumber daya mineral yang melimpah di negara tercinta ini antara lain emas, tembaga, platina, nikel, timah, batu bara, migas, dan panas bumi. Untuk mengelola panas bumi (geothermal) Pertamina telah membentuk PT Pertamina Geothermal Energy, Desember 2006 yang lalu. Geothermal adalah salah satu kekayaan sumber daya mineral yang belum banyak dimanfaatkan. Salah satu sumber geothermal kita yang berpotensi besar tetapi belum dieksploitasi adalah yang ada di Sarulla, dekat Tarutung, Sumut. Sumber panas bumi Sarulla bahkan dikabarkan memiliki cadangan terbesar di dunia. 

Saat ini panas bumi (geothermal) mulai menjadi perhatian dunia karena energi yang dihasilkan dapat dikonversi menjadi energi listrik, selain bebas polusi. Beberapa pembangkit listrik bertenaga panas bumi telah terpasang di manca negara seperti di Amerika Serikat, Inggris, Perancis, Italia, Swedia, Swiss, Jerman, Selandia Baru, Australia, dan Jepang. Amerika saat ini bahkan sedang sibuk dengan riset besar mereka di bidang geothermal dengan nama Enhanced Geothermal Systems (EGS). EGS diprakarsai oleh US Department of Energy (DOE) dan bekerja sama dengan beberapa universitas seperti MIT, Southern Methodist University, dan University of Utah. Proyek ini merupakan program jangka panjang dimana pada 2050 geothermal meru-pakan sumber utama tenaga listrik Amerika Serikat. Program EGS bertujuan untuk meningkatkan sumber daya geothermal, menciptakan teknologi ter-baik dan ekonomis, memperpanjang life time sumur-sumur produksi, ekspansi sumber daya, menekan harga listrik geothermal menjadi seekono-mis mungkin, dan keunggulan lingkungan hidup. Program EGS telah mulai aktif sejak Desember 2005 yang lalu.

Terjadinya Lumpur Panas dan Panas Bumi

Untuk memahami bagaimana panas bumi terbentuk, kita bisa analogikan bumi ini dengan telur ayam yang direbus. Bila telur rebus tadi kita belah, maka kuning telurnya itu dapat kita pandang sebagai perut bumi. Kemudian putih telur itulah lapisan-lapisan bumi, dan kulitnya itu merupakan kulit bumi. Di bawah kulit bumi, yaitu lapisan atas merupakan batu-batuan dan lumpur panas yang disebut magma. Magma yang keluar ke permukaan bumi melalui gunung disebut dengan lava.

Setiap 100 meter kita turun ke dalam perut bumi, temperatur batu-batuan cair tersebut naik sekitar 30 C. Jadi semakin jauh ke dalam perut bumi suhu batu-batuan maupun lumpur akan makin tinggi. Bila suhu di permukaan bumi adalah 270 C maka untuk kedalaman 100 meter suhu bisa mencapai sekitar 300 C. Untuk kedalaman 1 kilometer suhu batu-batuan dan lumpur bisa mencapai 57-600 C. Bila kita ukur pada kedalaman 2 kilometer suhu batuan dan lumpur bisa mencapai 1200 C atau lebih. Lebih panas dari air rebusan yang baru mendidih. Bahkan bila lumpur ini menyembur keluar pun masih tetap panas. Hal seperti inilah yang terjadi di Sidoarjo dan sekitarnya dimana lumpur panas masih menyembur.

Di dalam kulit bumi ada kalanya aliran air dekat sekali dengan batu-batuan panas di mana suhu bisa mencapai 1480C. Air tersebut tidak menjadi uap (steam) karena tidak ada kontak dengan udara. Bila air panas tadi bisa keluar ke permukaan bumi karena ada celah atau terjadi retakan di kulit bumi, maka timbul air panas yang biasa disebut dengan hot spring. Air panas alam (hot spring) ini biasa dimanfaatkan sebagai kolam air panas, dan banyak pula yang sekaligus menjadi tempat wisata. Di Indonesia banyak juga air panas alami yang dimanfaatkan sebagai sarana pemandian dan tempat wisata seperti Ciater, Cipanas-Garut, Sipoholon dan Desa Hutabarat di Tarutung, Lau Debuk-debuk di Tanah Karo, dan beberapa tempat lainnya di penjuru tanah air.

Kadang-kadang air panas alami tersebut keluar sebagai geyser. Di Amerika sekitar 10.000 tahun yang lalu suku Indian mengguna-kan air panas alam (hot spring) untuk memasak, di mana daerah sekitar mata air tersebut adalah daerah bebas (netral). Beberapa sumber air panas dan geyser malah dikeramatkan suku Indian pada masa lalu seperti California Hot Springs dan Geyser di daerah wisata Napa, Cali-fornia. Saat ini panas alam bahkan digunakan sebagai pemanas ruangan di kala musim dingin seperti yang terdapat di San Bernardino, Cali-fornia Selatan. Hal yang sama juga dapat kita temui di Islandia (country of Iceland) dimana gedung-gedung dan kolam renang dipanaskan dengan air panas alam (hot spring) yang kadang kala disebut dengan geothermal hot water.

Selain sebagai pemanas, panas bumi ternyata dapat juga mengha-silkan tenaga listrik. Di atas telah di-sebutkan bahwa air panas alam ter-sebut bila bercampur dengan udara karena terjadi fraktur atau retakan maka selain air panas akan keluar juga uap panas (steam). Air panas dan steam inilah yang kemudian dimanfaatkan sebagai sumber pembangkit tenaga listrik. Agar panas bumi (geothermal) tersebut bisa dikonversi menjadi ener-gi listrik tentu diperlukan pembangkit (power plants).

Reservoir panas bumi biasanya diklasifi-kasikan ke dalam dua golongan yaitu yang ber-suhu rendah (low temperature) dengan suhu <1500 C dan yang bersuhu tinggi (high tempera-ture) dengan suhu diatas 1500C. Yang paling baik untuk digunakan sebagai sumber pem-bangkit tenaga listrik adalah yang masuk kate-gori high temperature. Namun dengan perkem-bangan teknologi, sumber panas bumi dengan kategori low temperature juga dapat digunakan asalkan suhunya melebihi 500 C.

Pembangkit (power plants) untuk pembang-kit listrik tenaga panas bumi dapat beroperasi pada suhu yang relatif rendah yaitu berkisar antara 122 s/d 4820 F (50 s/d 2500 C). Banding-kan dengan pembangkit pada PLTN yang akan beroperasi pada suhu sekitar 10220 F atau 5500 C. Inilah salah satu keunggulan pembangkit listrik geothermal. Keuntungan lainnya ialah bersih dan aman, bahkan geothermal adalah yang terbersih dibandingkan dengan nuklir, minyak bumi dan batu bara.

Pembangkit yang digunakan untuk meng-konversi fluida geothermal menjadi tenaga listrik secara umum mempunyai komponen yang sama dengan power plants lain yang bukan berbasis geothermal, yaitu terdiri dari gene-rator, turbin sebagai penggerak generator, heat exchanger, chiller, pompa, dan sebagainya. Saat ini terdapat tiga macam teknologi pembangkit panas bumi (geothermal power plants) yang dapat mengkonversi panas bumi menjadi sumber daya listrik, yaitu dry steam, flash steam, dan binary cycle. Ketiga macam teknologi ini pada dasarnya digunakan pada kondisi yang berbeda-beda.

1.      Dry Steam Power Plants
Pembangkit tipe ini adalah yang pertama kali ada. Pada tipe ini uap panas (steam) lang-sung diarahkan ke turbin dan mengaktifkan generator untuk bekerja menghasilkan listrik. Sisa panas yang datang dari production well dialirkan kembali ke dalam reservoir melalui injection well. Pembangkit tipe tertua ini per-tama kali digunakan di Lardarello, Italia, pada 1904 dimana saat ini masih berfungsi dengan baik. Di Amerika Serikat pun dry steam power masih digunakan seperti yang ada di Geysers, California Utara.

2.      Flash Steam Power Plants

Panas bumi yang berupa fluida misalnya air panas alam (hot spring) di atas suhu 1750 C dapat digunakan sebagai sumber pembangkit Flash Steam Power Plants. Fluida panas tersebut dialir-kan kedalam tangki flash yang tekanannya lebih rendah sehingga terjadi uap panas secara cepat. Uap panas yang disebut dengan flash inilah yang menggerakkan turbin untuk meng-aktifkan generator yang kemudian menghasil-kan listrik. Sisa panas yang tidak terpakai ma-suk kembali ke reservoir melalui injection well. Con-toh dari Flash Steam Power Plants adalah Cal-Energy Navy I flash geothermal power plants di Coso Geothermal field, California, USA.

3.      Binary Cycle Power Plants (BCPP)

BCPP menggunakan teknologi yang berbeda dengan kedua teknologi sebelumnya yaitu dry steam dan flash steam. Pada BCPP air panas atau uap panas yang berasal dari sumur pro-duksi (production well) tidak pernah menyentuh turbin. Air panas bumi digunakan untuk memanaskan apa yang disebut dengan working fluid pada heat exchanger. Working fluid kemu-dian menjadi panas dan menghasilkan uap berupa flash. Uap yang dihasilkan di heat exchanger tadi lalu dialirkan untuk memutar turbin dan selanjutnya menggerakkan genera-tor untuk menghasilkan sumber daya listrik. Uap panas yang dihasilkan di heat exchanger inilah yang disebut sebagai secondary (binary) fluid. Binary Cycle Power Plants ini sebetulnya merupakan sistem tertutup. Jadi tidak ada yang dilepas ke atmosfer.

Keunggulan dari BCPP ialah dapat dioperasikan pada suhu ren-dah yaitu 90-1750C. Contoh pene-rapan teknologi tipe BCPP ini ada di Mammoth Pacific Binary Geo-thermal Power Plants di Casa Di-ablo geothermal field, USA. Diper-kirakan pembangkit listrik panas bumi BCPP akan semakin banyak digunakan dimasa yang akan datang.

Masa Depan Listrik PanasBumi

Meningkatnya kebutuhan energi dunia ditambah lagi dengan se-makin tingginya kesadaran akan kebersihan dan keselamatan lingkungan, maka panas bumi (geothermal) akan mempunyai masa depan yang cerah. Program EGS (enhanced geothermal systems) yang dilakukan Amerika Serikat misalnya, adalah suatu program besar-besaran untuk menjadikan geothermal sebagai salah satu primadona pembangkit listrik pada 2050 yang akan datang.

Indonesia sendiri sebetulnya sangat ber-peluang untuk melakukan pemanfaatan geo-thermal sebagai pembangkit listrik, bahkan berpotensi sebagai negara pengekspor listrik bila ditangani secara serius. Hal ini tidak berlebihan, mengingat banyaknya sumber geothermal yang sudah siap diekploitasi di sepanjang Sumatra, Jawa, dan Sulawesi. Untuk mempermudah pelaksanaannya tidak ada sa-lahnya bila kita bekerja sama dengan negara maju asalkan kepentingan kita yang lebih dominan. Misalnya kita bekerja sama dengan US Department of Energy (DOE) untuk men-dapat berbagai hasil riset mereka dalam EGS.• (Gilbert Hutauruk – SBTI-Direktorat Umum & SDM).

Keuntungan Tenaga Panas Bumi 

1. Pembangkit listrik tenaga Panas Bumi hampir tidak menimpulkan polusi atau emisi gas rumah kaca. Tenaga ini juga tidak berisik dan dapat diandalkan. Pembangkit listik tenaga geothermal menghasilkan listrik sekitar 90%, dibandingkan 65-75 persen pembangkit listrik berbahan bakar fosil. 

2. Salah satu limbah yang dihasilkan dari kegiatan operasional PLTPB CGI adalah drill cutting dari kegiatan pengeboran (drilling). Limbah drill cutting dapat dimanfaatkan sebagai pengganti agregat halus untuk konstruksi beton ringan. Untuk itu, perusahaan melakukan kajian guna memastikan pemanfaatan drill cutting tersebut tidak akan merusak kualitas lingkungan. Limbah drill cutting dapat dimanfaatkan untuk saluran drainase, blok beton, dan batako. Produk tersebut dipilih karena telah mengalami proses solidifikasi sehingga aman lingkungan. Komposisi campuran untuk memperoleh produk yang memenuhi SNI juga telah diupayakan.

Permasalahan dengan pembuatan PLTPB ini adalah anatar lain :
 1. Panas bumi yang dapat dieksploitasi sangat jauh didalam perut bumi. Untungnya dibeberapa negara terdapat retakan-retakan sehingga panas bumi relatif rendah. Indonesia ternyata juga termasuk dalam daerah lingkaran gunung berapi sehingga letak panas bumi lebih rendah dari yang lain.
 2. Untuk mencapai pnas bumi yang dapat dieksploitasi diperlukan pengeboran pada suhu tinggi dan biasanya batuan keras.
 3. Air panas dari geothermal kadang kadang bisa habis karena dieksploitasi. Ada pengalaman dari Pembangkit Listrik Tenaga Panas Bumi, ternyata setelah beroparasi beberapa tahun ternyata uap air tidak ada lagi. Berdasarkan penelitian ternyata air di perut bumi di sekitar daerah tersebut telah habis sehingga tidak bisa menghasilkan uap. Solusi dari hal itu adalah dengan cara mengebor dan memasukkan air ke perut bumi sehingga proses penguapan akan berlanjut lagi.